The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein.
نویسندگان
چکیده
UNLABELLED Many bacteria contain large cyclic diguanylate (c-di-GMP) signaling networks made of diguanylate cyclases (DGCs) and phosphodiesterases that can direct cellular activities sensitive to c-di-GMP levels. While DGCs synthesize c-di-GMP, many DGCs also contain an autoinhibitory site (I-site) that binds c-di-GMP to halt excess production of this small molecule, thus controlling the amount of c-di-GMP available to bind to target proteins in the cell. Many DGCs studied to date have also been found to signal for a specific c-di-GMP-related process, and although recent studies have suggested that physical interaction between DGCs and target proteins may provide this signaling fidelity, the importance of the I-site has not yet been incorporated into this model. Our results from Pseudomonas fluorescens indicate that mutation of residues at the I-site of a DGC disrupts the interaction with its target receptor. By creating various substitutions to a DGC's I-site, we show that signaling between a DGC (GcbC) and its target protein (LapD) is a combined function of the I-site-dependent protein-protein interaction and the level of c-di-GMP production. The dual role of the I-site in modulating DGC activity as well as participating in protein-protein interactions suggests caution in interpreting the function of the I-site as only a means to negatively regulate a cyclase. These results implicate the I-site as an important positive and negative regulatory element of DGCs that may contribute to signaling specificity. IMPORTANCE Some bacteria contain several dozen diguanylate cyclases (DGCs), nearly all of which signal to specific receptors using the same small molecule, c-di-GMP. Signaling specificity in these networks may be partially driven by physical interactions between DGCs and their receptors, in addition to the autoinhibitory site of DGCs preventing the overproduction of c-di-GMP. In this study, we show that disruption of the autoinhibitory site of a DGC in Pseudomonas fluorescens can result in the loss of interactions with its target receptor and reduced biofilm formation, despite increased production of c-di-GMP. Our findings implicate the autoinhibitory site as both an important feature for signaling specificity through the regulation of c-di-GMP production and a necessary element for the physical interaction between a diguanylate cyclase and its receptor.
منابع مشابه
The importance of conserved amino acids in heme-based globin-coupled diguanylate cyclases
Globin-coupled diguanylate cyclases contain globin, middle, and diguanylate cyclase domains that sense O2 to synthesize c-di-GMP and regulate bacterial motility, biofilm formation, and virulence. However, relatively few studies have extensively examined the roles of individual residues and domains of globin-coupled diguanylate cyclases, which can shed light on their signaling mechanisms and pro...
متن کاملA Diguanylate Cyclase Acts as a Cell Division Inhibitor in a Two-Step Response to Reductive and Envelope Stresses
UNLABELLED Cell division arrest is a universal checkpoint in response to environmental assaults that generate cellular stress. In bacteria, the cyclic di-GMP (c-di-GMP) signaling network is one of several signal transduction systems that regulate key processes in response to extra-/intracellular stimuli. Here, we find that the diguanylate cyclase YfiN acts as a bifunctional protein that produce...
متن کاملDcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation
C-di-GMP (3',5' -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase w...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملContribution of Physical Interactions to Signaling Specificity between a Diguanylate Cyclase and Its Effector
UNLABELLED Cyclic diguanylate (c-di-GMP) is a bacterial second messenger that controls multiple cellular processes. c-di-GMP networks have up to dozens of diguanylate cyclases (DGCs) that synthesize c-di-GMP along with many c-di-GMP-responsive target proteins that can bind and respond to this signal. For such networks to have order, a mechanism(s) likely exists that allow DGCs to specifically s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 198 11 شماره
صفحات -
تاریخ انتشار 2016